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SUMMARY

We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally effi-

cient tool for aiding in the process of alloy design. An intuitive description of the BFS method is

provided, followed by a formal discussion of its implementation. The method is applied to the

study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progres-

sion to higher order NiAl-based alloys linking theoretical calculations and computer simulations

based on the BFS method and experimental work validating each step of the alloy design process.

Keywords: Alloys, Intermetallics, BFS Method, Defect Structure, Semiempirical Methods
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INTRODUCTION

A number of industries including the electronics, computer, aeronautics, aerospace, and other

transportation related enterprises have long relied on the application of new high-performance

materials for their competitive advantages. Yet, in aeronautics and aerospace applications in par-

ticular, the potential loss in lives and liability that could result from any material failure dictates

that these systems must be very well characterized and understood. Therefore, not only do these

new materials have to push the envelope in terms of performance, at the same time they need a

high degree of maturity. This makes the introduction of new materials in these industries time

consuming and costly due to the need for painstaking de,_elopment, testing, and characterization.

At the same time, without the large defense-related expenditures that were possible during the

cold war era, it is necessary to find new ways for industry to operate that will provide significant

reductions in expense and cycle time in the development_ maturation, and certification processes

for new materials. To achieve these goals, the experimental approach to materials research and

design will have to be augmented with computational processes. The goal is to develop computa-

tional capabilities for alloy design with crystalline matelials to the same or greater degree than

exists today in the polymer and pharmaceutical industries

In a series of articles we will describe the integration ¢f a new computational materials model,

known as the BFS method [1], into an actual materials design program. The intent of this inte-

grated experimental and computational program is to develop revolutionary new alloys based on

the ordered intermetallic compound NiA1 as a replacement for Ni-based superalloys in aero-tur-

bine applications. NiAI offers a number of advantages _ver Ni-based superalloys, including a

higher melting temperature, better environmental resistance, significantly higher thermal conduc-
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tivity, a better response to thermal barrier coatings, and a reduction in density by as much as a

third without significantly impacting creep strength [2]. However, the development of an alloy

composition with the correct balance of high temperature strength and low temperature fracture

resistance has continued to elude investigators [3], leading to continued alloy design-structure-

property investigations and the eventual integration_of computational processes (BFS method) in

the search for an acceptable alloy.

Through the eventual partnership between experimental and theoretical procedures, we were

able to determine the naturally evolving role of computational methods in an alloy design pro-

gram. This role is schematically illustrated in Figure 1. At first, the design approach reported in

this work was guided by past experimental work of an empirical nature. For most alloy design

programs this is essentially one continuous loop (Figure l.a). But an integrated alloy design pro-

gram that augments experimental results with theoretical modeling would follow the path

described in Figure l.b. We started by modeling what was known about the NiAI system. This

allowed us to establish confidence in the model, make changes and optimize the model, and to

help understand and interpret the results. The model also provided the energetic explanations for

many of the experimental observations, thus giving us greater insight into the alloy system. As

confidence in the model grew, we started filling the gaps in our experimental database with com-

putational results. Finally, as alloy compositions became more complicated and burdensome to

evaluate, we used the computational model to direct the experimental work, and only experimen-

tally verified those few compositions that looked promising or that we needed in order to refine

the model. The advantage of this integrated approach is that it funnels most of the alloys through a

virtual production and screening process significantly reducing the number of alloys actually pro-

duced and characterized. This saves significant time and expense since the experimental process is
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the rate and resource limiting step.

This paper represents the first in the series of articles detailing our design program on NiAI-

based alloys. In forthcoming papers, we will describe our experimental and theoretical investiga-

tion of a series of 3-, 4- and 5-element alloys based on NiAI, highlighting the connection between

the two approaches. In this first paper we will provide a detailed description of the BFS method

and use it to reproduce the basic features of the base material, with as much accuracy as possible,

since the forthcoming extension of the model to complex systems will rely only on our ability to

describe the most basic system.

Therefore we will initially concentrate on the [3-phase of the binary Ni-AI system, which

exists over a range of stoichiometry from about 45-60 at. % Ni [4]. At the stoichiometric compo-

sition NiAI should exist in a perfectly ordered state where the Ni atoms occupy the cube corners

and the AI atoms occupy the cube centers of a generalized body-centered cubic lattice. Ni-rich

alloys are characterized by antisite point defects, where Ni atoms occupy sites in the AI sublattice,

resulting in a decrease in lattice parameter and an increase in density with increasing Ni content.

A different behavior is observed on the Al-rich side of stoichiometry. There is a steep decrease in

lattice parameter as well as a greater than expected decrease in density with increasing AI content.

The presence of vacancies in Ni sites would explain such behavior [4-8]. Recent X-ray diffraction

experiments [9] suggest a richer structure: the evidence, while strongly favoring the presence of

vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio.

Moreover, local ordering of vacancies may be preferred over a random distribution of individual

point defects [6].

While some of the concepts introduced in this first paper might seem too detailed for the task

at hand (i.e. describing the defect structure of I3-NiA1), they will be strictly necessary for a full
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understanding of the results from more complex systems that will appear in subsequent papers in

this series. In other words, we are establishing the valicity of our model by eliciting a positive

response to 'Q2' in Fig. l.b before proceeding further along the flow chart.

In most cases, theoretical techniques at the atomic level are used for validating or understand-

ing experimental findings, a task somewhat removed from the actual process of alloy design. In

this series, we embark on a process of materials development starting with the validation of our

theoretical approach with established experimental knowledge of the basic, binary system (this

first paper), building on our theoretical predictions as the complexity of the system increases (ter-

nary, quaternary alloys), finally allowing us to determine the structural properties of a 5-element

alloy (last paper) based on this groundwork. As a whole, this series of papers is meant to prove

another point, which goes beyond the features of the particular problems at hand: that semiempir-

ical methods, tied to powerful numerical techniques and implemented in the framework of an eco-

nomical and easy to handle operational procedure, can constitute a very useful tool in effectively

aiding in the area of materials design.

This paper introduces, in detail, the BFS method and its operational equations. After introduc-

ing the novel way of partitioning the alloy formation process proposed by the BFS method and

conceptually defining the quantities of relevance, we present details of the operational procedure.

We continue with an example illustrating the implementa :ion of the method. As a consequence of

the tremendous advance in semiempirical techniques over the last decade, we conclude this sec-

tion with a brief description of recent work done with other techniques of comparable complexity

as well as their relation to BFS. We continue by introduc ng the computational scheme chosen to

address the structure of NiAI, a procedure which will be _lsed and expanded in subsequent papers

dealing with higher order alloys. We conclude by providing the BFS predictions for the defect
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structureandphysicalpropertiesof _-NiAI, comparingthemwith experimentalresultswhenpos-

sible,thusprovidinguswith confidencein ourmodel.

THE BFSMETHOD

TheBFSmethodisoneof the latestadditionsto thegrowingfamily of quantum-mechanical,

approximatetechniquesfor thecalculationof materialsproperties.It hasa strongfoundationin

quantumtheory,but simplifies the numericaleffort usuallyassociatedwith ab-initio methods.

While agreatdealof detail (i.e.electronicstructure)is lostwhenapplyingsemiempiricalmethods

to specificsystems,valuableinsighton the generalbehaviorof physicalsystemsis gained,since

thesimplicity of theformulationallows for a quick andsufficientlyaccurateestimateof general

properties.

Severalmethodssuccessfullydealwith single-elementmetallicsystems,providingawealthof

informationon their physicalpropertiesand defectstructures[10-15].However,in the caseof

extendeddefects,i.e.surfaces,somemethodsexhibit limitationsin their predictivepower[11]. In

mostcasesthecorrespondingpotentialsor theparametersusedin thealgorithm,areusuallydeter-

minedfrom bulk propertiesand arethereforelimited in their ability to properly reproducethese

defects.However,theoverallpowerof semiempiricaltechniqueshasenabledabetterunderstand-

ing of defectssuchassurfacephenomenain spiteof theseshortcomings,whichhasleadtoexten-

sivegrowthin theareaof computersimulationsof defects.

For alloy structures,semiempiricalmethodshavebeenlesseffectivein providingresultswith

thesamedegreeof reliability asthosefor single-elementsystems.This ispartlydueto thenature

of the formalisms. Eitheran impractical numberof parametersis needed(modifiedembedded
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atom method [11] and tight-binding methods [ 12], for e_ample) or specific potentials have to be

determined on a case-by-case basis to deal with each specific alloy composition or phase, there-

fore limiting their transferrability.

In spite of these limitations, there has been remarkable progress in the last few years. In com-

bination with the development of powerful first-principles methods and an ever increasing compu-

tational power, theoretical approaches are becoming tools of great value for understanding,

modeling and designing materials suited for industrial applications.

Perhaps the main contribution of the BFS method io the field of computationally oriented

semiempirical methods, is that it is basically free of most of the restrictions that limit the applica-

tion of comparable techniques [16]: there is no restriction on crystal structure or the type of

atomic species considered and the number of input parameters is reduced to a minimum. More-

over, no experimental input is necessary, as all the input parameters can be determined by simple

first-principles calculations [ 17].

These advantages of the BFS method make it particularly suitable for broad alloy design prob-

lems where the nature of the predictions is comparable to the information that can be obtained

from experimental analysis (in this work, for example, ,ae attempt to study the structure of 5-ele-

ment alloys, both theoretically and experimentally). It is precisely this issue that motivates the

present work: to develop a reasonably accurate and corvputationally simple theoretical approach

that can provide valuable input for the development of aew materials, in close conjunction with

experiment.

Since its inception a few years ago [18], the BFS method has been successfully applied to a

variety of situations ranging from segregation profiles [16], alloy structure [19], surface alloying

of immiscible metals [20], to numerical simulations o! the scanning tunneling microscopy tip-
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sample interaction [21 ], bulk alloy design [ 1,22] and alloy surface structure [23]. Two of the char-

acteristics of the early applications of the BFS method, i.e., the need for experimentally deter-

mined input data and complete reliance on the pure constituent properties [ 18], initially imposed a

limitation when dealing with systems like [3-NiAI, where both constituents are fcc elements but

the alloy is bcc-based. No appropriate experimental input for bcc-Ni and AI is available. There-

fore, as shown in detail later in this work, we have reformulated the method relying only on pure

first-principles determined input, thus freeing BFS from limitations imposed by the restricted

availability of experimental data. We also avoid the potential problem of inconsistency or inaccu-

rate data obtained from different experimental techniques [14]. While the method retains the same

operational algorithm used in its previous applications, the new parameterization scheme pre-

sented in this paper greatly enhances its range of applications and accuracy.

General concepts

The BFS method provides a simple algorithm for the calculation of the energy of formation

AH of an arbitrary alloy (i.e. the difference between the energy of the alloy and that of its individ-

ual constituents). In BFS, the energy of formation is written as the superposition of individual

contributions of all the atoms in the alloy,

/_n = _.a(E'i-Ei)= Zei

i i

(1)

where E i' is the energy of atom i in the alloy and E i its corresponding value in a pure equilibrium

monatomic crystal. In principle, the calculation of AH would simply imply computing the energy
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of each atom in its equilibrium pure crystal and then izs energy in the alloy. In BFS, beyond

directly computing the difference e i for each atom in the alloy, we introduce a two-step approach

for such a calculation in order to identify contributions to the energy due to structural and compo-

sitional effects. Therefore, we break up the individual contributions of each atom e i to the total

energy of formation AH of the sample into two components: a strain energy and a chemical

energy.

While there is a certain level of arbitrariness in how this separation is implemented, it is only

meaningful when a good representation of the actual process is obtained by properly linking both

contributions. In other words, a proper coupling of these two apparently independent processes

(strain and chemical effects) must be accomplished in order for the final result to approach the

result one would obtain if a straightforward calculation (ie. ab-initio methods) was carried out.

We define the BFS strain energy as the contribution _o the energy of formation from an atom

in an alloy computed as if all the surrounding atoms were of the same atomic species, while main-

(a) (b) (c)

q

q

D

D

D

Fig 2: (a) A pure, equilibrium crystal (reference atom denoted I)y the arrow), (b) a reference atom (denoted

by the arrow) in the alloy to be studied (atoms of other spec es denoted with other shading) and (c) the

same reference atom in a monatomic crystal, with the identical structure of the alloy to be studied, but with

all the atoms of the same atomic species as the reference atom, for the calculation of the strain energy term
for the reference atom. The strain energy is the difference in energy of the reference atom between (c) and
(a).

NASA/TM-- 1998-208820 10



taining the original structure of the alloy. To visualize this concept, Fig. 2.a represents the atom in

question (identified with an arrow) in an equilibrium position in its ground state crystal (arbi-

trarily represented by a simple cubic lattice). Fig. 2.b shows the same atom in the alloy being stud-

ied (also arbitrarily represented by a different crystallographic symmetry). Two things can be

different between the reference crystal and our alloy. First, atoms of other species may occupy

neighboring sites in the crystal and second, the crystal lattice may not be equivalent in size or

structure to that of the ground state crystal of the reference atom. In Fig. 2.b, the different atomic

species are denoted with different symbols from that used for the reference atom, and the differ-

ences in size and/or structure are denoted with a schematically different atomic distribution as

compared to the ground state crystal shown in Fig. 2.a. The BFS strain energy term accounts for

the change in energy due only to the change in the geometrical environment of the crystal lattice

(from 2.a to 2.b), ignoring the additional degree of freedom introduced by the varying atomic spe-

cies in the alloy. In this context, Figure 2.c shows the environment 'seen' by the reference atom

when computing its BFS strain energy contribution. The neighboring atoms conserve the sites in

the actual alloy (fig. 2.b), but their chemical identity has changed to that of the reference atom

(fig. 2.a), thus simplifying the calculation to that of a single-element crystal. The BFS strain

energy term represents the change in energy of the reference atom in going from the configuration

denoted in Fig. 2.a to Fig. 2.c.

This choice for the BFS strain energy introduces two main advantages. First, by transforming

(for each atom) the actual alloy into a monatomic crystal, it greatly simplifies the calculation of

the energy of the reference atom in the alloy structure, making it amenable to a large number of

theoretical techniques that can efficiently deal with this simplified situation. Second, it gives par-

tial information concerning only the structure of the alloy, which could serve later to identify fine

NASA/FM--1998-208820 I I



geometrical effects on structure.

The second contribution to the BFS energy of formation is the chemical energy. Here, we are

interested in isolating the effect of compositionally different atoms occupying neighboring sites to

the reference atom. In order to do this, we leave out any structural information from the original

lattice by forcing the neighboring atoms to occupy equilibrium lattice sites corresponding to sites

in the pure cell of the reference atom, changing the composition of the atoms to match the chem-

ical profile in the alloy lattice. Fig. 3.a shows the reference atom in the actual alloy (similar to Fig.

2.b), while Fig. 3.b indicates the atomic distribution used in computing the BFS chemical energy

(note that the lattice used in Fig. 3.b corresponds to that ol the ground state crystal of the reference

atom as shown in Fig. 2.a).

The chemical energy is then based on the difference between the energy of the reference atom

in Fig. 3.b and its energy in its ground state crystal (Fig. 2.a). In order to completely free the

chemical energy from structural defects, certain provisior s have to be made which will be clearly

(a) (b)

Fig. 3: (a) The reference atom (denoted

by an arrow) in the actual alloy environ-

ment and (b) the reference atom sur-

rounded by a chemical environment

equivalent to that in (a) but with the dif-

ferent neighboring atoms occupying

equilibrium lattice sites corresponding to

the ground state of the reference atom.
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detailed later in this section.

So far, we have exploited the flexibility in partitioning the energy of formation to provide

ourselves with a simple and straightforward framework for computing both the BFS strain and the

BFS chemical energy contributions. However, a simple addition of these two quantities does not

necessarily constitute a good approximation to the actual energy of formation. After decoupling

the structural and chemical processes involved in alloy formation, we now recouple them by intro-

ducing a coupling function which, in its definition, has the necessary ingredients to ensure that

this partitioning scheme accurately reproduces a full calculation of the energy of formation when

recombined in this manner. The definition of the coupling function will be clear once we intro-

duce the necessary tools for computing the individual (strain and chemical) contributions in the

following subsections. We therefore write the energy of formation of the alloy as

AH = _.e = _.,(e s + ge c) (2)

where es is the strain energy, eC is the chemical energy, g is the coupling function and the sum

extends over every atom in the alloy.

Strain energy

The actual calculation of the BFS strain energy for each atom is straightforward and any tech-

nique designed to compute the energetics of pure crystals should be appropriate. However, in spite

of the apparent simplicity of this task, few techniques are actually capable of performing it suc-

cessfully in general situations. The choice should be limited to only those techniques that intro-
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duce a substantial level of accuracy, regardless of the geometry of the environment, as well as

those characterized by straighforward numerical determination. While first-principles calculations

would be ideal for performing this task, they are still limited by the excessive computational effort

associated with complex geometries. It is true that because of the simplicity of the NiAI case,

first-principles techniques could be used without major difficulties. However, this might not be

true when multiple alloying additions are considered. On the other hand, the computational

effort involved is not an issue with other semiempirical techniques comparable to BFS, but most

still fail in properly dealing with this situation in the presence of extended defects from a physical

standpoint or by relying heavily on parameters that might not be applicable or effective for the

type of alloy structure under consideration.

In all previous applications of BFS, we have used the Equivalent Crystal Theory (ECT)

[24,25], which in a straightforward manner, provides a simple algorithm for the calculation of

defect energies even in the presence of such radical defects as surfaces. The underlying concept

of ECT is simple and clear and it becomes particularly e_sy to understand if presented in terms of

the Universal Binding Energy Relation (UBER) [26]. Consider the ground state crystal, character-

ized by the equilibrium value of the Wigner-Seitz cell, rws E. An isotropic expansion or compres-

sion of such a crystal from its equilibrium shape (where all bonds are expanded or compressed

equally in all directions) yields a universal (in the sens _.that it has the same shape for all ele-

ments) curve for the energy vs. Wigner-Seitz radius (or _tomic volume), as shown in Fig. 4.a.

If the reference atom is in an equilibrium position in the ground state crystal, it sits at the bot-

tom of this curve, with an energy -E c (cohesive energy). If this crystal is deformed anisotropically,

or if a defect is introduced in the vicinity of the refereace atom (i.e., a vacancy, an interstitial

atom, etc.), it raises its energy. The curve indicates that there are two values of the Wigner-Seitz
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radius for which each atom in a homogenous, ideal, crystal have the same energy as the reference

atom in the defect crystal. We will call these two crystals, equivalent crystals of the reference

atom. These two positions represent two different conditions. To the right of the minimum the

crystal has an increased lattice parameter and thus a reduced electron density. To the left of the

minimum the opposite is true.

E

(a)
Ground state

¢

rWSE r..._

(b)

Surface

¢-

L,_ ,,, e"

E

rinst rsurf

/

(c)
I*

_" Interstitial

Fig. 4: Universal binding energy relation (E vs. r) for a monatomic crystal. When all atoms are in their

equilibrium lattice sites, the energy of each atom is the cohesive energy, indicated with the arrow in (a). In

the presence of a surface (b) or in the presence of an interstitial atom (c), a given atom will have a higher
energy along the binding energy curve, which also corresponds to a certain ideal perfect crystal with an

expanded (b) or compressed (c) lattice parameter. Any atom in these equivalent crystals have the same

energy as those of the reference atoms (denoted by an arrow) in (b) and (c).
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For example, an atom on the surface of a metal (Fig. 4.b), after losing a large number of neigh-

bors, thus increasing its energy substantially due to the &,_crease in electron density, has the same

energy in that situation that it would have in a perfect crystal but with a larger lattice parameter. In

terms of its energy, the atom would not distinguish between being on the surface or being in a

larger version of the ground state crystal. Conversely, if an interstitial atomis introduced close to

the reference atom, its energy increases to an amount eqt:'ivalent to the one that it would have in a

properly homogenously compressed ideal crystal. Figure 5 reiterates these concepts, showing the

equivalent crystals of a surface atom. As a consequence, every point along the UBER of a certain

crystal is degenerate, as there is a large number of defects that would have the same energy, and

therefore, the same equivalent crystal. In other words, +:he reference atom can find itself in the

presence of a number of different defects that raise its energy by the same amount, therefore

assigning the same equivalent crystal to all those defects.

I 4

 ao+x 

Atom in the surface

plane

Atorr in the bulk of an expanded

(equivalent) crystal

Figure 5: Equivalent crystals of a surface atom. The surface atom is in an environment of reduced electron

density, equivalent to that found in an isotropically expanded bulk crystal.
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ECT provides an efficient algorithm for finding the equivalent crystal for each atom, corre-

sponding to a certain environment, based on quantum perturbation theory. We refer the reader to

Ref. 24 for a derivation of the ECT equations from perturbation theory, and to Ref. 25 for more

details on the implementation of the ECT operational equations. Once the reference atom is cho-

sen, all that is needed is to know the distances between the reference atoms and a group of its

neighbors. Although no preset cut-off distance is defined in ECT, it is sufficient in most cases to

consider all neighbors up to second or sometimes third-neighbor distances. Finding the equiva-

lent crystal for a certain atom near a defect translates into finding the equivalent lattice parameter,

i.e., the expanded or compressed lattice parameter of the equivalent crystal, such that the energy

of an atom in that crystal is the same as that of the atom in the defect crystal. This is done by solv-

ing the following transcendental equation for the lattice parameter of the equivalent crystal (see

Ref. 24 for a detailed derivation of this equation)

-(_+_) R2 rp -(_+ s(,._)),._
NRII'e-_R'+ MR_'e : Z ,.e (3)

k

where N and M are the ideal number of nearest-neighbors (N) and next-nearest neighbors (M) in

the equivalent (ideal) crystal, R 1 and R 2 are the nearest-neighbor and next-nearest-neighbor dis-

tances, respectively, in the equivalent crystal, and where p, o_ and 1 are ECT parameters that fully

describe the corresponding atomic species within the context of ECT [24]. Eq. 3 is solved for a s,

the lattice parameter of the equivalent crystal (R 1 and R 2 are the nearest neighbor and next nearest

neighbor distances, respectively, in a crystal with lattice parameter as). The right hand side (r.h.s.)

of this equation, which is computed in terms of the actual distances for the known structure in the

defect crystal rk, can be interpreted as a measure of the defect (in the sense of how the actual envi-
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ronment surrounding the reference atom differs from that in its pure crystal) due to the actual

atomic environment of the reference atom where rk are the distances between these atoms and the

reference atom. S(r) is a screening function, also to be defined later. The sum runs over all neigh-

boring atoms (at distances rk) within a sphere of radius rc, defined as the next-nearest neighbor

distance in the perfect euqilibrium lattice.

If this equation admits a solution, that means that the equivalent crystal associated with the

reference atom is properly defined and its energy can be determined by use of the binding energy

relationship (demonstrated to accurately represent the UBER) [25,26]:

es = -E,(I + as)e (41

The scaled lattice parameter a* S is related to the solution of Eq. 3, a s , by means of the fol-

lowing expression

* (as - ae) (5)
as = q /

where a e is the equilibrium lattice parameter, E c is the cohesive energy of the ground state crystal,

q is the ratio between the equilibrium lattice parameter and the equilibrium Wigner-Seitz radius

rws E, and I is a scaling length to be defined later. Having computed the equivalent crystal, we now

determine the BFS strain energy contribution of the refe_'ence atom as the difference between the

energy of the atom in the defect crystal and its energy at equilibrium in its ground state crystal:

*. -.Aes- E,. l-(l+as_e ) (6)
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where the subindex S to the scaled lattice parameter denotes the fact that this equivalent crystal is

related to the strain energy component of this atom in the alloy. The parameters p, tz, I and _, are

ECT parameters that fully describe the atomic species in question: p is 2n-2, where n is the princi-

pal quantum number, a e is the equilibrium lattice parameter, 1 is a scaling length and )_ is a

screening factor to properly account for screening effects beyond first neighbors (see Ref. 24 for a

full description of the determination of these parameters).

The parameter or, which is directly related to the structure of the wave function in the overlap

region between similar atoms, has been determined in past applications of ECT by requiring that

the formalism reproduces the experimental value of the single vacancy formation energy [24,25].

However, in order to minimize the dependence on experimental or theoretical input for the deter-

mination of these parameters, we now introduce a novel way of determining the parameter o_,

which provides the additional benefit of determining the range of validity of the approximations

introduced in writing the perturbation equation for the calculation of the equivalent crystal. As

mentioned before, the r.h.s, of Eq. 3 can be considered as a 'measure' of the defect (in the sense

that the departure of this quantity from its equilibrium value is representative of the difference

between the defect crystal and the perfect, equilibrium crystal). For example, the presence of

vacancies close to the reference atom reduces the value of this quantity, while other defects, like

interstitials, increase its value. While a solution exists for arbitrarily small values of this quantity,

this is not so for values much larger than the one corresponding to equilibrium (for which the

equivalent crystal is the equilibrium crystal itself). There is a maximum value for the r.h.s of Eq. 3

above which no solution to this equation can be found. We therefore determine ot by requiring that

this maximum defect corresponds to the situation when the strain energy of the reference atom

equals its cohesive energy. In doing so, o_becomes dependent on the other parameters characteriz-
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ing the atomic species (E c, a e, p, l, )_). This redefinition of the ECT parameter ct reduces the actual

necessary input to just the cohesive energy (Ec), the equilibrium lattice parameter (ae), and the

bulk modulus (B o) since I is directly related to these three parameters by

E,. (7)
1- --

12TtrwsEB o

where rws E denotes the equilibrium value of the Wigner-Seitz radius. Furthermore, the screening

length )_ [24] is defined as

TABLE 1

COMPUTED INPUT PARAMETERS FOR NiAI CALCULATIONS

LMTO results

Atom Lattice Cohesive Bulk Vacancy

Parameter Energy Modulus Energy

a e (/_) E c (eV) B 0 (GPa) E v (eV)

Ni 2.752 5.869 249 3.0

AI 3.190 3.942 78 1.8

ECT parameters

Atom p ct 1 )_

Ni 6 3.067 0.763 0.2717

AI 4 1.8756 1.038 0.3695

BFS parameters

ANiAI = -0.0581 /_" I AAINi = 0.0840 ,_-1

LMTO results and ECT parameters for bcc-based Ni and AI, and BFS

parameters for B2 NiA1.
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= 2.8l 1. (8)

Finally, the screening function S(r) is defined by S(r)=O if r<r t, S(r) = (1/2_)(1 - cos [3) if

r2<r<r ! (where [3 = rc(r-r!)/(r2-r!) ) and S(r)= 1/'_ if r>r 2, where r! and r 2 are the equilibrium

nearest- and next-nearest-neighbor distances in the equilibrium crystal [24,25].

Chemical energy

The calculation of the chemical energy involves an environment related to the ground state of

the reference atom (i.e., the reference atom, as well as its neighbors, are located in equilibrium lat-

tice sites corresponding to the ground state crystal of the reference atom) although the actual

chemical distribution of the atoms is conserved. Given the actual chemical environment of a given

atom (those atoms within next-nearest neighbor distance from it), it is straightforward to deter-

mine an equivalent chemical environment in a perfect crystal. A set of transformations can be

defined which assigns, to each site in the perfect crystal, the appropriate chemical species. The

resulting distribution is then chemically equivalent to that found in the alloy. In essence, the same

considerations made for the strain energy apply here, with the only difference being that the

changes of electron density in the vicinity of the reference atom are now due to changes in the

atomic identity of the neighboring atoms rather than changes in the atomic locations. In this sense,

the same concepts (the existence of an equivalent crystal) apply, only now the reference atom can

have different energies than that allowed by its own UBER. As mentioned before, ot is the only

parameter within our formalism that carries all the information regarding the electron density in

the overlap region between a pair of atoms. For dissimilar atoms it is only natural then to 'perturb'
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suchan environment by allowing the wave function i_, that region to be parameterized by a

slightly different parameter than that used in monatomic calculations. We therefore define the

BFS parameter AAB (and ABA), given by

O_AB = CtA + ABA (9)

when the reference atom is of species A and its neighbor of species B and

OCBA= o_B + aaH (10)

when B is the reference atom and its neighbor is an A atom. The BFS parameter AAB (or ABA)

perturbs the pure element parameter o¢, indicating the mi_ed nature of the bond.

Following the guidelines for writing Eq. 3 and taking into account that the neighboring atoms

are by definition located in equilibrium lattice sites of the reference atom, the trascendental equa-

tion to be solved for the (chemical) equivalent crystal is simply

,,n['a -(Cta + d---_A)R" PA -(cqa+a_),-,.A .r-., l'a -(c¢"+±_a+_ )r2'a
NRII'"e -aAR' + ,vtt_ 2 e = _.rl,Ae + ___r2, Ae ' (11)

k k

where rl. A denotes the nearest neighbor distance in an ideal crystal A and r2,A the corresponding

next-nearest neighbor distance. All other terms have their previous meanings. The calculation of

the chemical energy proceeds from solving Eq. 11 for a c, the lattice parameter of the equivalent

crystal for which R I and R 2 are the nearest- and next-ne_ rest neighbor distances, respectively,, and

then determining the scaled lattice parameter a*c given 9y

NAS AFFM-- 1998-208820 22



• (ac-a A )

a C = q Ia (12)

so that the chemical energy is

ec = yE c l-(l+a,,)e (13)

where y= l if a* c > 0 and y=-i if a* c <0 [18].

Finally, a safeguard should be introduced in the definition of the chemical energy contribution

to account for those situations where the reference atom does not have full coordination (i.e., the

number of nearest-neighbors is less than that found in the perfect, equilibrium crystal). Consider

the reference atom occupying a surface site of an alloy. In computing the chemical energy, infor-

mation about the existence of the surface is introduced by the fact that there are not enough atoms

in the vicinity of the reference atom to correspond to the assumption in Eq. 1 1. The chemical

energy obtained in this way would carry information not only on the chemical effect but also on

the structural effect due to the absence of some neighbors. In order to completely free the chemi-

cal energy from this structural information, we reference the previously defined chemical energy

to a similar structural state but where all the atoms surrounding the reference atom are of the same

identity as the reference atom. A reference chemical energy ec,, is thus computed in this manner,

so that the total chemical energy contribution from the reference atom is

Ec = ec- ec," (14)

where ec, ' is computed using Eq. 11 but setting the BFS parameters to zero. The energy is then

computed using Eqs. 12 and 13.
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Coupling the strain and chemical energy

As defined, the chemical energy does not depend on the actual geometry of the alloy which is,

obviously, unrealistic. Therefore the BFS strain and chemical energy terms need to be recoupled

by properly accounting for the influence of structural effects on the chemical contribution. In

order to properly describe the asymptotic behavior of such a quantity ( ec should vanish at large

separations and should drastically increase at small separations), we introduce a coupling function

g linking both terms. The coupling function introduces this asymptotic dependence by means of

a* s, the strain scaled lattice parameter (Eq. 5), which can be understood as a measure of the strain

effect. If a's= 0 it means that the reference atom finds itself in an environment that resembles

equilibrium; a positive value of a* s results from average expansions with respect to equilibrium

and negative values of a* s relate to average compressions. We therefore define the coupling func-

tion g as:

g = e (15)

so that defects that involve expansions reduce the effect c f the chemical energy on the total energy

of formation and viceversa. Fig. 6 displays the effect of the coupling function g on the chemical

energy, which otherwise would amount to a constant contribution to zSJ-/, independent of the size

of the cell. Summarizing these concepts, the BFS contri 9ution e from an atom i to the energy of

formation ,5,/4 is given by

e = es+g(ec-ec,) = es+gE c (16)

A graphical representation of the calculation of e is show n in Fig. 7.
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Fig. 6: Schematic respresenta-

tion of the strain and chemical

energy contributions of an atom

A in an alloy as a function of

the (strain) equivalent lattice

parameter a S. The dashed line

indicates the constant value of

the chemical energy, which

amounts to the total contribution

to the energy of formation only

when the lattice parameter of the

alloy coincides with that of the

equilibrium crystal A. The total

chemical energy contribution,

ge C, vanishes at large inter-

atomic separations. For exam-

ple, if the equivalent (strain)

lattice parameter is al, we show

the corresponding strain (es) and

chemical (gec) energy contribu-

tions. If the equivalent (strain)

lattice parameter is ae, then eS =

0 and eC corresponds to its con-

stant value ( g = 1).

Applying BFS to the calculation of the energy of formation of a bcc binary alloy

To demonstrate the ideas presented thus far, we apply the BFS formalism to the calculation of

the energy of formation of a binary A-B alloy in the B2 structure, as a function of the alloy lattice

parameter a o . Fig. 8 represents the alloy formation process where two pure bcc crystals A and B,

each with equilibrium lattice parameters aA and a B are reassembled to form a B2 alloy with lattice

parameter a o. In the abscence of defects, this is a particularly simple example due to its high sym-

metry and uniformity. All A atoms are equivalent, and so are the B atoms. It is only necessary to
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computetheenergycontributionof onegenericA atomzndoneB atom.In whatfollows, wewill

computeeA only, since eB would be computed in the sante manner. The different contributions to

eA are shown in Fig. 9.

In writing the equation for the calculation of the BFS strain energy (see Eq. 3), we note that in

the actual alloy an A atom has 8 nearest neighbor B atoms at a distance r I and 6 next-nearest

neighbor A atoms at a distance a o. Following the method for evaluating the strain energy environ-

ment, we must remember to 'flip' the identity of these neighbors to that of the reference atom. The

BFS strain energy equation for atom A is then

e = es + g ( ec - ec 0 )

m

+g

t...._

.Jl
i ,

/ i

i-------..-4

q ,----

H

--Or"

--g

-41C

ID

Fig. 7: Schematic representation of the BFS contributions tc the total energy of formation. The left hand

side represents the reference atom (denoted by an arrow) in _n alloy. The different terms on the right hand

side indicate the strain energy (atoms in their actual positions but of the same atomic species as the refer-

ence atom), the chemical energy term (atoms in ideal lattice sites) and the reference chemical energy

(same as before, but with the atoms retaining the original identity of the reference atoms).
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c_r'hPa -OtARI -_Pa -(°¢a+_a)R: -(°Ca+ ln Pa -°carl Pa _aa)afl

¢5K 1 e +13/g 2 e = ¢5r I e +6a 0 e (17)

This equation is trivially solved, with the lattice parameter of the equivalent crystal being just

A
_'s = a0. The corresponding BFS strain energy contribution is

e s = E c 1 +(1 +a s )e (18)

where the scaled lattice parameter of the (strain) equivalent crystal is given by

A* (a0-aA)

a s = q IA (19)

A similar calculation is carried out for atom B, replacing PA, lA, aA and )_A with PB, IB, aB and

XB in Eqs. 17-19. From the calculation of the strain energy contributions for atoms A and B one

A (aA) B (aB)

A-B (a 0)

• IW lw

© ©

Fig. 8: Crystals A and B (with lattice parameter aa and a/fl are

reassembled to form a B2 A-B alloy with lattice parameter a o.
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Fig.9: Schematic representation of the contribution of an A atom (center of the cube) to the energy of

formation of B2 A-B compound with lattice parameter a o. The left hand side represents the actual B2

structure. The first term in the left hand side indicates the strain energy environment (all atoms are of

type A, in the lattice of the alloy and the second and third term (between brackets) indicate the chemical

energy environment and the reference chemical energy environment, respectively.

would also derive the corresponding coupling functions gA and gB, according to Eq. 15.

Fig. 10 shows the environment assumed in the calculation of the chemical energy. Since in the

example given, both pure crystals are of the same crystallographic structure as the alloy, the cal-

culation is particularly simple, and it only requires noticing that the lattice parameter for each case

is the equilibrium lattice parameter of the pure crystals (a A and aB).

The BFS equation for the calculation of the chemical energy contribution for atom A is

9 ,o

I I

O •

A (aA) B (aB)

Fig. 10: Environment seen by atoms A and B, respectively, for the calculation of the BFS chemical energy

contribution. Note that the actual atomic composition of the alloy is preserved, but the lattice parameters

used for each case corresponds to that of the equilibrium pure crystals A and B, respectively.
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.-.Pa -ctAR_ .-.-.PA --(_A+_-_A)R2 o PA --(C(A-I'ABA)rA P4 --(O_A'I'_'_4)OA

t_ 1 e +oK, e = esr A e +6a A'e •

(20)

where rA is the equilibrium nearest neighbor distance in a crystal A. Note that atom A interacts

with 8 nearest neighbors of species B (thus the factor O_A+ABA in the first term of the r.h.s, of Eq.

20) and that all 6 of its next-nearest neighbors are of the same atomic species A. This equation is

solved for the equivalent lattice parameter a C and the chemical energy contribution is

A A ( A * .. -a(a'*'_e c = ?AEc l-(l+a c )e ) (21)

where the scaled lattice parameter of the (chemical) equivalent crystal is given by

A
A* (aC-aA)

a C = q Ia
(22)

and where 7A = 1 or -1, depending on whether the scaled lattice parameter is positive or negative.

A similar calculation is performed for atom B, replacing the appropriate parameters. In particular,

note that the interaction parameter in the exponential in the first term of the r.h.s, of Eq. 20 is now

O_B+AAB, as all the nearest neighbors of the reference B atom are of species A (Fig. 10).

In this particularly simple example, it is not necessary to compute the reference chemical

energy (ec,,) for either type of atom, as the corresponding environments correspond to perfect

equilibrium A and B crystals already. Therefore, the total chemical energy contributions are

A A B B
ec = ec and _c = ec"

N AS A/TM-- 1998-208820 29



We finally write the following expression for the energy of formation AH of the B2 structure

A-B:

1 A A B B

AH = -5(es + gAEC + e s + gBEC )
(23)

While this expression applies to this stoichiometric binary system characterized by one atom

of each atomic species, in more complex situations the calculation might involve considering

more non-equivalent atoms. In this example the Ni atoms locate themselves in one simple cubic

sublattice and the AI atoms in the other. As such, all Ni or AI atoms are respectively identical and

contribute the same amount to the energy of formation. Therefore, the BFS calculations have to

be performed for just one atom of each species. The simplicity of this calculation allows for a

straighforward determination of the BFS parameters in terms of the energy of formation and equi-

librium lattice parameter of the binary base alloy (NiA1). In the following subsection, we will

refer to the scheme used in this work for parameterizing the binary system at hand.

Parameterization of the BFS Method

The previous example indicates that beyond the apl)roximate scheme developed to simulate

the process of alloy formation (i.e. separating strain an_l chemical contributions), the power and

accuracy of the method are heavily dependent on the parameters used both for the individual ele-

ments (p,/, a e, E c, X) and those used for each type of bit_ary combination that might appear in the

system (AAB and ABA). Also, this example highlights the extreme simplicity of the method when

the crystallographic structure of the alloy is the same a_. that of the constituents (in the example,
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both A and B were bcc elements and the alloy formed is also bcc-based). While in general it is not

known what is the phase structure of an alloy for a certain composition, some basic knowledge

can be used a priori to simplify the calculations.

Take, for example, the system to be studied in this work: 13-NiAI. This binary alloy is known

to have the B2 structure, in spite of the fact that each of its constituents are fcc elements. Assum-

ing the existence of a bcc phase of Ni as well as for AI would reduce the complexity of the calcu-

lation to a level similar to the example just discussed. If the BFS method relied only on

experimental input for the determination of the necessary parameters listed above, it would make

this approach impossible to implement under most circumstances. However, first-principles

methods can be used in a straightforward manner to determine the physical properties of these

elements ( bcc-Ni and bcc-Al) even if they do not exist naturally. In doing so, not only do we

eliminate the dependence of the BFS method on sometimes uncertain or non-existent experimen-

tal input, but we also generate a consistent approach. This approach simplifies the numerical

complexity of the problem and also introduces a systematic procedure for the generation of the

necessary parameterization, since they would all be computed by the same method, with the same

level of approximation.

To determine these parameters, we used the Linear-Muffin-Tin-Orbital (LMTO) [27] method

in the Atomic Sphere Approximation (ASA). This scheme was used to calculate the equilibrium

properties ( cohesive energy E c, equilibrium lattice parameter a e, and bulk modulus B o) of the ele-

mental solids in the same crystal symmetry as that of the compound to be studied (bcc). This set

of parameters is accurately described by the Local Density Approximation [28]. In this work, we

generated parameters for Ni, AI, Ti, Cr and Cu in the bcc symmetry, as well as the B2 structures

of each of the pairs formed (only B2 NiA1 and NiTi exist in nature) for the determination of the
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BFS parameters AAB and ABA. The parameters for Ti, £ r and Cu will be used and validated in

subsequent papers in this series.

The LMTO method uses a minimal basis set. For this work, we only used s, p and d orbitals.

All calculations were done with equivalent sampling of the Brillouin zone using, for the bcc lat-

tice, 120 k-points in the irreducible wedge. The basis set and sampling of the Brillouin zone used

for the calculation of the B2 compounds was equivalent to that used for the pure elements. We

refer the reader to Refs. 27-28 for a detailed discussion of the LMTO method. The pure element

LMTO-generated parameters p, l, E c, a e and the resulting value of o_ are displayed in Table 1 for

Ni and AI.

The simplicity of the BFS formalism allows for a straighforward method for determining the

BFS parameters AAB and ABA by an analytical procedure that not only eliminates numerical

errors but also sheds light on the range of validity of the resulting parameters. Leaving the details

of the determination of the BFS parameters to Appendix 1, we list in Table 2 the resulting values

for ANiAI and AAINi.

Other theoretical methods applied to intermetallics

As mentioned in the Introduction, there has been substantial progress in the last two decades

in the area of theoretical techniques and their relevance in dealing with systems of practical

importance. Current techniques range from those that impose an empirical parameterization of the

constants in Ising Hamiltonians [29-33] or those that pa:ameterize experimental databases [34],

families of semiempirical methods based on the determi:lation of interatomic potentials [11-15],

to all-electron first principles calculations [35-44]. Recent first-principles calculations include the
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full-potential linearizedaugmentedSlater-typeorbitalmethod(LASTO)usedby Alatalo et al., in

their analysisof the complexZr-AI phasediagram[40], the first-principlesdiscretevariational

methodstudyof disorderedFe-V alloysby Krauseet al. [41], adetailedstudyof compositionand

phasediagramsof Cu-Au,Ag-Au, Cu-AgandNi-Au by Ozolinset al. [42], andthedetermination

of formationenergiesfor Fe3AIby Mayeret al. [43]. These,andothersimilarstudies,concen-

tratemostlyonmonatomic[12,44]or binarysystems.

In termsof semiempiricaltechniques,currentwork onNiA1alloys includetheextensiveanal-

ysisof this systemby Farkaset al., in aseriesof recentarticleswheretheembeddedatommethod

is modifiedfor its usein thissystem[45-46].OthertechniquescurrentlyusedincludeFinnis-Sin-

clair potentialsspecificallydeterminedfor NiAI [47], tight-bindingmethods[12,44](still mostly

restrictedto singleelementsystems),andpotentialsdeterminedfrom first-principlescalculations.

This lastgroupincludestheworkof Zhanget al. in Fe-AIandNi-AI alloys[48], andthestudyof

transitionmetalaluminidesby Moriarty andWidom[49].

Otherrelevantwork in this areaincludestheextensionof Miedema'ssemiempiricalmodelfor

point defectsin B2 compoundsby Bakkeret al. [34] andthedevelopmentof semiempiricalN-

bodynon-centralpotentialsfor FeAIalloysby BessonandMorillo [50].

In termsof ternaryNiAI+X systems,very little progresshasbeenmaderelativeto that made

for binaryalloys,althoughit is expectedthatthedevelopmentof accuratepotentialsandefficient

computationalmethods,will generategrowth in this areain thenearfuture.Most notably,recent

theoreticalworkof the influenceof ternaryadditionsto NiA1includestheMonteCarloanalysisof

NiAI+Ti alloysby Suminet al. [51], andthestatisticaltheoryof orderingcombinedwith theelec-

tronic theoryof alloysin thepseudopotentialapproximationby Mekhrasovet al. [52].

As we increasethecomplexityof thesystemathand,aswill clearlybethecasein thesubse-
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quent papers in this series, we will have little if any previous theoretical work for comparison.

Once we move beyond ternary systems, all our results will become purely of a predictive nature,

relying on experimental verification.

RESULTS AND DISCUSSION

The BFS calculations for B2 NiA1 were performed on a 72-atom cell, allowing for atomic

relaxation induced by the presence of vacancies and substitutional atoms. However, relaxations

were allowed only at a global level in the sense that the lattice parameter of the cell as a whole

was varied until the energy was minimized. A more detailed study, which we consider unneces-

sary for the goals of this work, would include the possibility of local atomic relaxations in the

vicinity of defects. This issue, and its consequences on the phase structure, will be dealt with in

forthcoming papers.

In a cell of this size there is a large number of possible distributions of Ni and AI atoms for

any given alloy composition. Knowing the behavior of each and every one of them would be

unnecessary (in this case, considering all the possible di:;tributions of Ni and AI atoms as well as

vacancies, in a 72-site cell), as most of the information aeeded for determining the defect struc-

ture can be obtained from a few selected situations where the essential defect structures are con-

sidered. Therefore, instead of searching for an absolute e_lergy minimum for a given number of Ni

and AI atoms located in every available lattice site with _ny specific short and long order scheme,

we chose to construct a selected, but sufficiently large number of "candidate' distributions to

obtain information on the energetics of the system close to the ground state. These configurations

are still, to a certain extent, arbitrary, and may not necessarily include the ground state for a given
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composition. However, it is clear that when creating a catalogue of selected configurations which

consider the most likely atomic distributions, one would obtain not only the necessary informa-

tion (i.e., the lowest energy state for each concentration) but also additional information on gen-

eral trends in defect structures. While most of the configurations included in the catalogue are

experimentally unaccessible, they serve the purpose of determining trends in the bulk properties

of the actual alloys. Moreover, if the set of configurations sampled is sufficiently large and the

structures are properly chosen, respecting the symmetries that characterize the system, one would

expect to find the ground state or states sufficiently close to it at each composition.

As a consequence, an additional advantage of this approach is that it enables us to determine

an 'energy spectrum', showing how alternative ordering schemes compare energetically with the

lowest energy state for each composition. The magnitude of the energy gaps between alternative

distributions and the ground state should be proportional to the probability of finding these config-

urations in the actual alloy. Figure 11 includes representative samples of the catalogue of configu-

rations used in this work, first showing the basic 72-atom cell (Fig. 1 l.a) followed by a few cases

that include substitutional defects, antistructure atoms and vacancies (Fig. 11.b-d).

Based on stoichiometric NiA1, Appendix 2 introduces a simple way of characterizing each one

of the configurations included in the catalogue of structures we examined. Due to the large num-

ber of configurations included, only a small but representative number of them are graphically

shown in Fig. 11. The rest are described in a notational shorthand discussed in Appendix 2.

The analytical procedure is then straightforward. The BFS method is applied to each one of

the configurations included in the catalogue in order to determine its energy of formation as well

as the equilibrium lattice parameter (for which the total energy of formation is minimized).

Appendix 2 also includes these BFS results for each configuration.
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Fig. 11: (a) The computational cell used to generate the catalogue shown in Appendix 2. (b) Sam-

ple of a NiAI cell showing two site exchanges (see [4] in the catalogue).
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Fig. 11 (continued): (c) Sample of a Ni52.78AI47.12 alloy where AI atoms at lattice sites 38, 41 and

46 are replaced by Ni atoms (see [25] in the catalogue in Appendix 2). (d) Sample of a

Ni47.83A152.17 alloy, where the A1 atom at lattice site 42 is replaced by a vacancy, the Ni atom at

lattice site 30 is replaced by an AI atom, and the Ni atom at lattice site 31 is replaced by a vacancy

(see [38] in the catalogue).

NASA/TM-- 1998-208820 37



Fig. 12 displays some of the results for representative configurations in the catalogue. The

results are shown in the form of an energy spectrum, which shows a clear comparison of the ener-

getics of the various atomic arrangements. Each column in this spectrum corresponds to specific

compositions of Niso+xA150_ x alloys, denoted by the Ni atomic concentration. Each energy level is

identified by the catalogue number used in Appendix 2. The lowest energy configuration (lowest

level in the first column in Fig. 12) corresponds to the perfect B2 structure, where all Ni and all AI

atoms populate their own interpenetrating sublattices. Higher energy configurations represent a

wide variety of defects. Moving up in the spectrum, we first find a group of levels very close in

energy which correspond to the presence of antistructure atoms, where a pair of Ni and AI atoms

switch places. The small differences in energy between these levels relates to the relative position

of the two antistructure atoms (being smallest when they are nearest-neighbors). After another

comparable gap in energy, we found states with two antistructure pairs and so on. Similar situa-

tions are tbund at higher Ni concentrations. The lowest energy configuration for a given concen-

tration in Ni-rich alloys always corresponds to a pure substitutional state and higher energy states

include additional swaps of atoms between Ni and AI sites. For the highest Ni concentration

shown (55.55 at. % Ni), the purely substitutional case distinguishes between the configuration

where the substitutional atoms are as far away from eacla other as possible, to configurations with

slightly higher energy where the substitutional atoms display a clustering tendency.

This spectrum emphasizes both the completeness _f the catalogue selected (i.e. the lowest

energy state is properly identified for every concentratic n) as well as its shortcomings: some high

energy states (2 for 50 at. % Ni; 19 for 51.39 at. % Ni), ¢haracterized by clustering of antistructure

atoms) are missing at higher concentrations. On the oth,_r hand, the high energy state 27 for 55.55

at. % Ni is comparable to 8 for 50 at. % Ni, both including specific alignment of the antistructure
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Fig. 12: 'Energy spectrum' for substitutional defect structures in Ni-rich NiAI alloys. Each column

represents a specific binary alloy concentration. The levels represent the energy of formation of con-

figurations specified in the catalogue (the numbers by each level identify the configuration in Appen-

dix 2). All the configurations included in this Figure correspond to substitutional alloys exclusively

(no vacant sites). In all cases, the lowest energy configuration corresponds to Ni atoms occupying

available AI sites. Higher energy states include various antistructure defects.
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atoms in specific planes and directions (see Appendix _). The smaller energy gap between this

type of configuration and the lowest energy state for higher Ni concentrations hints at the possibil-

ity that this type of defect might occur in the actual alloy.

Fig. 13 shows similar results for Al-rich alloys, indicating not only that the lowest energy

states arise from the presence of Ni vacancies but also that selected antistructure-vacancy combi-

nations could also be present. Experimental evidence confirms these results [4-9].

The determination of the lattice parameter for each configuration is done by minimizing the

energy of the cell with respect to the lattice spacing of the cell as a whole but not allowing for

individual anisotropic relaxations. While performing detailed calculations including individual

atomic relaxations is well within the computational efficmncy of the method, such lengthy calcu-

lations would become impractical for higher order alloys. We therefore compromise between

accuracy and simplicity assuming that whole-cell isotropic relaxations will be sufficient for

describing the energetics of these alloys.

The wealth of information embedded in Fig. 12 can be used to gain further insight in the

dependence of the lattice parameter a(x) of Ni50+xA150_ x alloys. While it is natural to determine

a(x) from the values of a corresponding to the lowest energy states for each concentration, as

depicted in Fig. 12, it is interesting to first visualize the lattice parameter of alternative, higher

energy, structures by choosing characteristic values for each 'band' (group of energy levels close

in energy) in Fig. 12.

Fig. 14 displays the lattice parameter as a function o" Ni concentration for a portion of the set

of "candidate' configurations, regardless of the energy of the configuration. Each point corre-

sponds to a distinct arrangement of Ni and AI atoms as _ ell as vacant Ni or AI sites in the calcula-

tional cell. We focus our attention on three particular regimes that can be seen in Fig. 14: an
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invertedV-shapedsetof filled symbolswith its apex at the stoichiometric composition, a line of

circles indicating structures with increasing lattice parameter with increasing AI content, and a

large number of configurations enclosed by the boundary line consisting of filled symbols. The

configurations denoted by filled symbols represent the lowest energy configurations at each com-

position. The ascending line of circles corresponds to configurations where no vacancies are

present and increasing numbers of AI atoms occupy Ni sites, a typical substitutional defect struc-
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Fig. 13 : Energy spectrum for Ai-rich NiA1 alloys containing vacancies. For XNi = 49.29, the low-

est energy state corresponds to an AI atom in a Ni site and a nearest-neighbor vacant A1 site (34),

a vacant Ni site (33) and an A1 atom in a Ni site and a distant vacant A1 site (35), in order of

increasing energy. For XNi = 48.57, the lowest (two-vacancy) state corresponds to an A1 anti-

structure atom and a nearest-neighbor pair of vacancies in Ni and AI sites (38) with almost the

same energy of formation as a configuration with two vacant Ni sites (37). For higher AI concen-

trations, the lowest energy state is always one with vacant Ni sites (40, 43, 46).
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Fig. 14: Lattice parameter (in A) as a function of Ni concentration for various candidate defect

structures. Different symbols indicate alloys with different types of general defect structures. Sim-

ilar symbols for the same composition correspond to different distributions of the same defect

within the computational cell. The shaded symbols correspond to those configurations with the
lowest energy for that composition.
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ture. While substitutional states have the lowest energy for each concentration in the Ni-rich side,

the opposite is true for the 45-50 at. % Ni concentration range. The cluster of points enclosed by

the inverted V-shaped boundary correspond to configurations characterized by random distribu-

tions of vacancies in A1 or Ni sites as well as random exchanges of Ni and A1 atoms from their

equilibrium stoichiometric locations. Stoichiometric _- NiAI is noted by an asterisk.

A comparison of the modeled results with experimental data for the lattice parameter of vari-

ous NiAI alloys is displayed in Fig. 15. The theoretical results, shown as a continuous line, consist

of the calculated lattice parameter and density for the lowest energy configuration observed at

each composition. The lattice parameter results from the lowest energy configurations on the Ni-

rich side of stoichiometry, show excellent agreement with experimental data (Fig. 14). The linear

regime in the density (Fig. 15.a) and lattice parameter (Fig. 15.b) vs. Ni concentration for the

range 50-60 at.% Ni is almost exactly reproduced by our calculations. A recent review paper by

Noebe et al. [53] provides a convenient linear description of the available experimental results,

both for the lattice parameter a and density p vs. Ni concentration. To highlight the agreement

between theory and experiment, we therefore compare those expressions with ones corresponding

to the BFS results. For comparison purposes, both quantities were normalized to the stoichiomet-

ric NiAI values (a o and P0, for the lattice parameter and density, respectively), as there is a slight

O O

difference of 1.2 % between the experimental (a 0 = 2.887 A) and LMTO values (aTheo r = 2.85 A)

for the lattice parameter of the stoichiometric B2 NiAI structure. The expressions for experimen-

tal and theoretical results on the Ni-rich side of stoichiometry are

Exp

and
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(_00/ = 0.5324+ 0.009352XNi
Theor

for the density (relative to the stoichiometric NiAI density) and

(25)

(_ool = 1.0384_0.0007914XN i (26)
Exp

and

/--_o) = 1.0396-0.0007689XNi (27)
Theor

for the lattice parameter (relative to the stoichiometric NiAI value) for Ni concentrations, XNi ,

between 50 and 60 at. %.

On the Al-rich side of stoichiometry a more complicated defect structure is observed. The

lowest energy states on the Al-rich side correspond to arrangements of vacancies with no change

in site occupancy for the Ni and AI atoms with respect to their original sublattice in NiAI. In the

lowest energy configurations, the Ni vacant sites are at next-nearest neighbor distance from each

other. In other words, clustering of the defects results in the lowest energies. Once again, the ensu-

ing values for the lattice parameter and the density as a function of Ni concentration (closed trian-

gles in Fig. 14) can be described by linear relationships and compared to the experimental values

[19]:

and

_-
Exp

(28)
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(_To) = 0.19914+0.01602XNi (29)
Theor

for the density (relative to the stoichiometric NiAI value) and

Exp

and

/'.+/ :
\u(}] Theor

for the lattice parameter (relative to the stoichiometric NiA1 equilibrium value) for XNi between 45

and 50 at. %.

While not directly apparent from Fig. 14, this work also showed that locally ordered arrange-

ments of defects were energetically preferred to random distributions of point defects. For exam-

ple, in Fig. 14 at 47.82 at. % Ni there are an open and filled triangle of very similar lattice

parameter. The difference in these points is that the input structure of the lowest energy configura-

tion (solid triangle) was composed of a greater degree of ordering of Ni-vacancies. While overall

structures composed of Ni-vacancies had the lowest energy at a given composition, a similar trend

of lower energy with increasing ordering of point defect:s was observed within the other types of

defect arrangements as well. For example, within the fitmily of configurations composed of A1-

vacancies plus Ni-vacancies, the configurations (hexagons) with lattice parameters closest to

those of the ground state consisted of locally ordered arrangements of vacancies (i.e. an A1

vacancy shared by two Ni-vacancies at the nearest neigilbor distance) while those configurations

with higher energy consisted of more random distributicns of point defects.

This also hints at the possibility that the actual defect arrangements on the M-rich side of sto-

ichiometry may be more complicated than normally assumed. A complete treatment of tempera-

NASA/TM--1998-208820 46



ture and local relaxation effects would be necessary tb absolutely rule out the existence of these

more complicated structures consisting of ordered arrangements of Ni and AI vacancies in Al-rich

alloys. But even that would not rule out the possibility that these structures may actually be

observed as metastable states since their energy is not that different from defect structures com-

posed solely of Ni-vacancies.

CONCLUSIONS

We introduced a formalism that combines the type of results achieved by first-principles

methods with the convenience of semiempirical methods for a simple and straightforward analy-

sis of situations that cannot be treated in a similar fashion by either individual technique. An intu-

itive as well as a formal description of the BFS method was presented, with the goal of

familiarizing the reader with the concepts to be used in this and subsequent papers in this series on

NiAl-based alloy design. Beyond the operational equations, we introduced other elements that

will be heavily used when dealing with higher order alloys. These include the definition of a cata-

logue of predetermined configurations (as opposed to lengthy computational algorithms for the

search of minimum energy structures), the use of energy spectra to identify trends and to gain

insight on metastable structures (as opposed to just dealing with lowest-energy states), and the

description of the observed behavior in terms of BFS strain and chemical energies.

As our first test of the BFS method we analyzed the defect structure of binary NiA1 alloys.

Our theoretical modeling of the defect structure of _-NiA1 alloys is fully consistent with the con-

clusions drawn from experimental evidence indicating that substitutional defects dominate in Ni-

rich alloys and that the presence of vacancies is responsible for the sharp decrease in lattice
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parameterwith increasingAI contentin Al-rich alloys.Moreover,theresultshint to thepossibil-

ity that a morecomplexdefectstructureexists:the presenceof vacanciesboth in theNi andAI

sublatticein Al-rich alloysanda preferencefor clusteringor local orderinginsteadof a random

distributionof pointdefectswith anydeviationin stoichiometry.In futurepaperswewill build on

theseresultsby modelingternaryandhigherordera'lloys
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Appendix A - BFS Parameterization

An advantage of the BFS method is that, due to its simple formulation, it allows for a straight-

forward (analytical) determination of the BFS AAB and ABA interaction parameters, therefore

avoiding numerical uncertainties inherent to any numerical fitting procedure. Moreover, the input

data used, whether it is obtained experimentally or from other theoretical calculations, 'localizes'

the accuracy of the ensuing BFS predictions for those alloys in the vicinity of the phase diagram

of the ordered structure used as input.

For simplicity, we reduce the following derivation to the case where the ordered structure cor-

responds to a cubic lattice characterized by a single lattice parameter a o (simple bcc or fcc alloys

with no tetragonal distortion).

Consider an alloy A-B, where due to the symmetry of the structure, there are N x non-equiva-

lent atoms of species X (X - A, B) and "x, denotes the multiplicity of the ith non-equivalent atom

of species X, so that

Nx

Z Z nx, = Nc (AI)
Xi=l

where N,. is the total number of atoms in the cell. In this context, two atoms are deemed to be

equivalent if they have the same environment within a sphere of radius R, the nearest-neighbor

distance in the ground state crystal. In this case, the tw) conditions used to determine the BFS

parameters consist of exactly reproducing the heat of for nation AH 0 of the ordered structure and

the corresponding lattice parameter, which are determii_ed via LMTO calculations for a given

structure [27,28]. In this work, we used the B2 NiAI base alloy as the basis for the LMTO calcula-

tion.
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The two conditions are

Nx nXi

and

(A2)

(A3)

where ex, represents the BFS contribution to the energy of formation, given by

S C C,,
ex, = ex, + gx_(exi- exi ) (A4)

c,, isc c c,, is the BFS chemical energy, where ex,In Eq. A4, e_, is the BFS strain energy and ex, = ex -ex,

the reference energy.

For bulk ordered alloys, such as B2 NiAI, the BFS strain energy is the same for all atoms of

the same species and it is uniquely determined by the input value of the lattice parameter %,

(A5)ex, = E l-(l+ax,)gxi

where

S* X

aXi = _x(a0- a e ) (A6)

x x
where V_c and ,,, are the cohesive energy and equilibrium lattice parameter, respectively, for

3 3 for bcc elements) and/xatoms of species X and [3x = _x' where q is a structure constant ( q =

is a scaling length for species X [24,25]. The coupling function included in Eq. A4 is given by

gx,

--¢tXi

= e (A7)

The BFS energy depends on the lattice parameter of the alloy structure

strain energy and glue, therefore, Eqs. A2-A3 can be written as

only via the BFS
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--""o
and

E + 'la..JoZ i -"' .

i=

Eq. A8 and A9 can then be written as

Nx tlX, . C Nx nxi S , ,

£ Z NgL(a")ex, = AHo-Z X -N-ex_'ao'
Xi=l cXi=l c

and

Nx tlX C

_X _ --'_xgx'(Oo)Ex'i 1Nc

N_(

• tlXirXm S*

= Z Z -N-t:'cPxax,(ao)gx_(ao)
Xi=l c

(A8)

(A9)

(AlO)

(A11)

If we concentrate now only on binary alloys that form fcc or bcc ordered structures character-

ized by a single lattice parameter (L12 , LI 0 , B2, B32, etc.), then n A +n g = N. Simple expressions

can then be obtained for the BFS chemical energies cc and cc :

C _ [_B(_I - 82 (A12)

£ A - nAg(_))(_B__A )

C 8°-- [_AS1
(AI3)

and

E B =

where

(0)
llBgB (_B-- _A)

S
81 = (tl A + nB)AH 0 - (nAeSA(ao) + nBeB(ao)) (AI4)

and

_ _x (0), a8_ = _nxPxLcg x t o)_ (A15)
X

with gk.o_= gx("o). The BFS chemical energies can then be determined with Eqs. AI2 and AI3, so
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that we can then search for the set of parameters (6aB, asa ) that simultaneously satisfy these con-

ditions. This is done by starting with the use of the following expression for the BFS chemical

energy in terms of the equivalent (chemical) lattice parameter

( .c x a x )e l (A16)
c x = YxEc 1-(1+ c*. -a_; ]

where _, = 1 if a_i*>o and _, = -I otherwise. The scaled lattice parameter for the chemical energy

C _
ox , given by

C* C X

ax = Px(ax-a ) (A17)

is related to the BFS parameters (AAB , ABA ) by means of the BFS equation for the chemical energy

-(oc,, + _)R2 + A,:,),.x. -(o_,,+/',, ,.+ _,),'x__,,nPx -°_xRn P_ " . _'_ _, Px -(_x _ Px " " .

_vK I e +MR 2.e = 2._Vxkrx,e +_.aMxkrx2e (AI8)
k k

where N(M) is the number of nearest-neighbors (next-nearest-neighbors) in the equivalent crystal

x x (c _ for bcc). If we defineof species X. R, = c. c, it2 = c, r, = .'.,. and "x_ = ",. = --

(,, } ('*
c* t,x + ,,,,, I

Qx = N rx + _x J e +M ae +-_x e
(AI9)

X Px -°Lxrxl

ql = Nxxrx,e (A20)

and

x px -(oc,,+ _,),-x__
q2 = Mxxrx.e (A21)

and considering the typical magnitude of the exponent in Eq.A21, it is reasonable to make the

approximation "x, = "x, only in that term, then the 1.h.s. of the BFS equation (Eq. A18) reads
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Qx-ql -q2 = Nxrrx,e + Mxyrx e " (A22)

Let

X /)x' -OLxrxl

qd = Nxyrx_e

so that

px-(°_x + _ )rx2
+ Mxyrx+e (A23)

X X X -Arx"xl
Qx - q ] - q2 -- qd e (A24)

then the BFS parameter '_rx is given by

x x

1t+ q )Arx = ---In x (A25)
rx_ qd

This result is exact if second-neighbor contributions are not taken into account, or if for any

particular structure Mxy = 0 for all X and g,, as is the case in this work. The B2 structure is such

that any given atom has an atom of its own species as a next-nearest-neighbor, i.e. Mxx = 6 and

Mrx = 0 . With the exception of the numerical solution of Eq. (A16), the procedure for the deter-

ruination of ZXrx using Eq. (A25) is straightforward and simple. Moreover, it can be easily shown

that in most cases a quadratic approximation to the Rydberg function (I + :)e-: suffices to guaran-

tee accuracy up to 10 % of the exact results, with the adde:l advantage of a completely analytical

determination of the BFS parameters AA_ and _sA. The parameters used in this work were

obtained by following the procedure described in this App(:ndix, including second neighbor inter-

actions and a numerical solution of the the transcendental (quations involved.
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APPENDIX2

In this appendix,we list the catalogueof configurationsusedin this work for different

atomicdistributionsin a 72-atomcell, shownin Fig. 11.TheB2 NiA1alloy correspondsto the

atomicdistributionshownin Fig. 11.a,whereNi atomsaredenotedby blackdisks(labeled1,2,

3.... ) andtheA1atomsaredenotedwith opencircles(labeled13,14,15.... ).A configurationis

definedby changingthe occupancyof thesesitesby exchangingatomicpositions,substituting

atomsof onespeciesby atomsof theotherspecies,or by introducingvacancies.Thefollowing

tablelists mostof theconfigurationsusedin this work (only thoseusedto constructtheenergy

spectrumshownin Figs. 12and 13).Forexample,aNi atomin siten substitutingfor anAI atom

in sitem isdenotedwith Nin-> Aim;Vndenotesa vacancyin siten andAIn<-> Nimdenotesan

exchangeof A1andNi atomsbetweensitesn andm.Theconfigurationsarelistedaccordingto

theirNi concentration.Thetablealsoincludesthevaluesof theenergyof formationof thecon-

figurationaswell asits equilibriumlatticeparameter(obtainedbyminimizing theenergyof the

cell with respectto a).
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XNi

50.00

51.39

52.78

54.17

Configuration

1.B2 NiA1

2. Ni31<-> A142.

3. Ni3o,32<->A141,43

4. Ni3o,32<-> A142,43

5. Ni3o,31<-> A142,43

6. Nil_ 9 <-> A113_24

7. Nil,3,5.7,9,11 <-> A113.15,17,19,21,23

8. A165_68 <-> Ni53.56

9. Ni3o,31 <->AI 18,42

10. Ni31 <-> A142

11. Ni3o <-> A146

12. Ni3o.31,34,35,54,55,58,59 <-> A114,17, !9,22,62,65,67,70

13. Ni30,31.34.35,54,55,58,49 <->All 3,15,21.23,61,63,69,71

14. Ni50,54,58 -> AI + AI62,66,70->Ni

15. Ni30->Al + Ni2, 5,7,10,50,53,55.58 <>A113,14, i7,18,37,38,41,42

16. A142 -> Ni

17. A142 -> Ni + [12]

18. A142 -> Ni + [13]

19. AI 18,3(I,42 -> Ni

20. A142.43 -> Ni

21. A142,44 -> Ni

22. A138,42.46 -> Ni

23. A142_44 -> Ni

24. A142,46,47 -> Ni

25. A138,41.46-> Ni

AH

(eV/atom)

-0.60310

-0.50816

-0.41377

-0.41261

-0.43544

-0.07384

-0.16910

-0.31271

-0.44184

-0.50814

-0.49795

-0.11404

-0.06528

-0.09057

-0.06414

-0.59223

-0.12280

-0.06828

-0.50607

-0.57990

-0.58163

-0.56609

-0.56781

-0.56759

-0.53671

a

(A)

2.8500

2.8588

2.8678

2.8679

2.8656

2.9006

2.8914

2.8773

2.8650

2.8588

2.8597

2.8964

2.9011

2.9050

2.9020

2.8457

2.8902

28955

2.8537

2.8418

2.8416

2.8380

2.8378

2.8379

2.8259

NASA/TM-- 1998-208820 58



XNi

55.55

XNi

Configuration

26.A138,4o,61,63-> Ni

27.A165_68-> Ni + A161_64<-> Ni53_56

28.Al 18,J9,42,43-> Ni

29. A138,39,41,42 -> Ni

30. AI 19,23,42.46 ->

31. Al 18,22,23,46 -> Ni

32. A165_68-> Ni

Al-rich Ni{5o_x)Al<5o+x)

Configuration

49.29 33. Ni31 -> V

34. Ni31 -> AI + A142 ->V

35. Ni31 -> AI + A146 -> V

48.57 36. Ni3o,32 -> V

37. Ni3o,3 i -> V

38. Ni3o -> A1 + Ni31 -> V + A142 -> V

39. Ni3o,31 -> AI + Airs,42 -> V

47.83 40. Ni26,3o,34-> V

41. Ni3o,31,32 -> V

42. Ni3o,34,35-> V

47.06 43. Ni3o,31,54,55 -> V

44. Ni26,27.29,3 o -> V

45. A165_68 -> V + Ni53_56 -> A1

46.27 46. Ni5,29,3o,31,32,53 -> V

47. Ni5.7,29,3 J,53,55 -> V

AH

(eV/atom)

-0.56044

-0.33123

-0.55365

-0.55547

-0.55702

-0.55523

-0.55418

AH

(eV/atom)

-0.43876

-0.45149

-0.42323

-0.27055

-0.35110

-0.35407

-0.34075

-0.34334

-0.26174

-0.24887

-0.18313

-0.14426

-0.10201

-0.09769

-0.06919

a

(A)

2.8335

2.8541

2.8342

2.8340

2.8338

2.8340

2.8341

a

(A)

2.8426

2.8474

2.8518

2.8338

2.8349

2.8383

2.8442

2.8276

2.8263

2.8281

2.8218

2.8205

2.8430

2.8070

2.7960
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